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In this paper a boundary element method is developed for the nonuniform torsional

vibration problem of bars of arbitrary doubly symmetric constant cross-section taking

into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily

distributed or concentrated conservative dynamic twisting and warping moments along

conditions. The transverse displacement components are expressed so as to be valid for

large twisting rotations (finite displacement–small strain theory), thus the arising

governing differential equations and boundary conditions are in general nonlinear. The

resulting coupling effect between twisting and axial displacement components is

considered and torsional vibration analysis is performed in both the torsional pre- or

post-buckled state. A distributed mass model system is employed, taking into account

the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear

initial boundary value problem with respect to the variable along the bar angle of twist

and to an ‘‘average’’ axial displacement of the cross-section of the bar. The numerical

solution of the aforementioned initial boundary value problem is performed using the

analog equation method, a BEM based method, leading to a system of nonlinear

differential-algebraic equations (DAE), which is solved using an efficient time

discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized

eigenvalue problem is formulated with respect to the fundamental mode shape at the

points of reversal of motion after ignoring the axial inertia to verify the accuracy of the

proposed method. The problem is solved using the direct iteration technique (DIT), with

a geometrically linear fundamental mode shape as a starting vector. The validity of

negligible axial inertia assumption is examined for the problem at hand.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

When arbitrary torsional boundary conditions are applied either at the edges or at any other interior point of the bar
due to construction requirements, this bar under the action of general twisting loading is leaded to nonuniform torsion.
Besides, since weight saving is of paramount importance, frequently used thin-walled open sections have low torsional
stiffness and their torsional deformations can be of such magnitudes that it is not adequate to treat the angles of cross-
section rotation as small. In these cases, the study of nonlinear effects on these members becomes essential, where this
nonlinearity results from retaining the nonlinear terms in the strain–displacement relations (finite displacement–small
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strain theory). When finite twist rotation angles are considered, the nonuniform torsional dynamic analysis of bars
becomes much more complicated, leading to the formulation of coupled and nonlinear torsional and axial equilibrium
equations. In this case, accounting for the axial loading and boundary conditions becomes essential to perform a rigorous
dynamic analysis of the bar.

When the twist rotation angles of a member are small, a wide range of linear analysis tools, such as modal analysis, can
be used and some analytical results are possible. As these rotation angles become larger, the induced geometric
nonlinearities result in effects that are not observed in linear systems. In such situations the possibility of an analytical
solution method is significantly reduced and is restricted to special cases of bar boundary conditions or loading.

During the past few years, the nonlinear nonuniform torsional dynamic analysis of bars undergoing moderate large
rotations has received a good amount of attention in the literature. More specifically, Rozmarynowski and Szymczak in [1]
studied the nonlinear free torsional vibrations of axially immovable thin-walled beams with doubly symmetric open cross-
section, employing the finite element method. In this research effort only free vibrations are examined, the solution is
provided only at points of reversal of motion (not in the time domain), no general axial, torsional or warping boundary
conditions (elastic support case) are studied, while some nonlinear terms related to the finite twisting rotations as well as
the axial inertia term are ignored. Crespo Da Silva in [2–3] presented the nonlinear flexural–torsional–extensional
vibrations of Euler–Bernoulli doubly symmetric thin-walled closed cross-section beams, primarily focusing to flexural
vibrations and neglecting the effect of torsional warping. Pai and Nayfeh in [4–6] studied also the nonlinear flexural–
torsional–extensional vibrations of metallic and composite slewing or rotating closed cross-section beams, primarily
focusing to flexural vibrations and neglecting again the effect of torsional warping. Di Egidio et al. in [7–8] presented also a
FEM solution to the nonlinear flexural–torsional vibrations of shear undeformable thin-walled open beams taking into
account in-plane and out-of-plane warpings and neglecting warping inertia. In these papers, the torsional–extensional
coupling is taken into account but the inextensionality assumption leads to the fact that the axial boundary conditions are
not general. Simo and Vu-Quoc in [9] presented a FEM solution to a fully nonlinear (small or large strains, hyperelastic
material) three dimensional rod model including the effects of transverse shear and torsion-warping deformation based on
a geometrically exact description of the kinematics of deformation. Moreover, Pai and Nayfeh in [10] studied a
geometrically exact nonlinear curved beam model for solid composite rotor blades using the concept of local engineering
stress and strain measures and taking into account the in-plane and out-of-plane warpings. In the last two research efforts,
the out-of-plane buckling of a framed structure and a helical spring have been analyzed, respectively, thus the extensional–
torsional coupling is not discussed. Mohri et al. in [11] proposed a FEM solution to the linear vibration analysis of pre- and
post-buckled thin-walled open cross-section beams, neglecting warping and axial inertia, considering geometrical
nonlinearity only for the static loading and presenting examples of bars subjected to free vibrations and special boundary
conditions. Finally, Machado and Cortinez in [12] presented also a FEM solution to the linear free vibration analysis of
bisymmetric thin-walled composite beams with open cross-section, taking into account static initial stresses and
deformations considering geometrical nonlinearity only for the static loading and presenting examples of bars subjected to
special boundary conditions. The boundary element method has not yet been used for the nonlinear nonuniform torsional
dynamic analysis of bars.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of
arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity (finite
displacement–small strain theory). A coupled nonlinear initial boundary value problem with respect to the variable along
the bar angle of twist and to an ‘‘average’’ axial displacement of the cross-section of the bar is formulated and numerically
solved using the analog equation method [13], a BEM based method, leading to a system of nonlinear differential-algebraic
equations (DAE). Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with
respect to the fundamental mode shape at the points of reversal of motion (after ignoring the axial inertia) to verify the
accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT) [14]. The main objective
of the present contribution is to focus on the torsional–extensional coupling of bars and provide the corresponding
governing differential equations without dropping any nonlinear or inertial terms. Moreover, the influence of the axial
inertia term on the response of the bar under nonlinear torsional vibrations is investigated, while numerical examples of
both free and forced vibrations are presented. The essential features and novel aspects of the present formulation
compared with previous ones are summarized as follows:
(i)
 The cross-section is an arbitrarily shaped doubly symmetric thin or thick walled one. The formulation does not stand
on the assumption of a thin-walled structure and therefore the cross-section’s torsional and warping rigidities are
evaluated ‘‘exactly’’ in a numerical sense after formulating a boundary value problem with respect to the primary
warping function.
(ii)
 The beam is supported by the most general boundary conditions including elastic support or restraint while a
distributed mass model system is employed, taking into account all the inertial terms (warping, rotatory and axial
inertia).
(iii)
 Previous research efforts except for [1] have not focused in the investigation of nonlinear torsional vibrations and the
arising torsional–extensional coupling, while the improvements of the proposed method come up considering
reference [1] where (a) the solution is provided only at points of reversal of motion—not in the time domain, (b) the



ARTICLE IN PRESS

Fig. 1
regio

E.J. Sapountzakis, V.J. Tsipiras / Journal of Sound and Vibration 329 (2010) 1853–1874 1855
torsional, warping and axial boundary conditions do not include the elastic support case, (c) some nonlinear terms
related to finite twisting rotations as well as the axial inertia term are not included in the analysis, and (d) forced
vibrations are not considered.
(iv)
 The proposed method employs a BEM approach (requiring boundary discretization for the cross-sectional analysis)
resulting in line or parabolic elements instead of area elements of the FEM solutions (requiring the whole cross-
section to be discretized into triangular or quadrilateral area elements), while a small number of line elements are
required to achieve high accuracy.
Numerical examples are worked out to investigate the effects of the nonlinear torsional vibrations such as the coupling
between the torsional and axial equilibrium equations and the axial inertia terms.

2. Statement of the problem

2.1. Displacements, strains, stresses

Let us consider a prismatic beam of length l (Fig. 1), of constant arbitrary doubly symmetric cross-section of area A. The
homogeneous isotropic and linearly elastic material of the beam cross-section, with modulus of elasticity E, shear modulus
G and mass density r occupies the two dimensional multiply connected region O of the y, z plane and is bounded by the
Gj ðj¼ 1;2; . . . ;KÞ boundary curves, which are piecewise smooth, i.e. they may have a finite number of corners. In Fig. 1b Syz

is the principal bending coordinate system through the cross-section’s shear center. The bar is subjected to the combined
action of the arbitrarily distributed or concentrated time dependent conservative axial load nðx; tÞ, twisting mt ¼mtðx; tÞ

and warping mw ¼mwðx; tÞ moments acting in the x direction (Fig. 1a).
Under the aforementioned loading, the displacement field of the bar for large twisting rotations is given as

uðx; y; z; tÞ ¼ umðx; tÞþyx
0 ðx; tÞ �fP

S ðy; zÞ (1a)

vðx; y; z; tÞ ¼ �z � sinyxðx; tÞ�yð1�cosyxðx; tÞÞ (1b)

wðx; y; z; tÞ ¼ y � sinyxðx; tÞ�zð1�cosyxðx; tÞÞ (1c)

where u, v, w are the axial and transverse bar displacement components with respect to the Syz system of axes [15]; yx
0 ðx; tÞ

denotes the rate of change of the angle of twist yxðx; tÞ regarded as the torsional curvature; fP
S is the primary warping

function with respect to the shear center S, respectively [16], and umðx; tÞ is an ‘‘average’’ axial displacement of the cross-
section of the bar, that will be later explained.
x,u

z,w

l
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. Prismatic element subjected to axial and torsional loading (a) with an arbitrarily shaped doubly symmetric constant cross-section occupying the

n O (b).
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Employing the strain–displacement relations of the three dimensional elasticity for moderate displacements, the
following strain components can be easily obtained :
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qx
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2

qv

qx

� �2

þ
qw

qx

� �2
" #

(2a)

gxy ¼
qu
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gxz ¼
qw

qx
þ

qu

qz
þ

qv

qz

qv

qx
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qw

qz

qw

qx
(2c)

where it has been assumed that for moderate displacements ðqu=qxÞ25qu=qx, ðqu=qxÞðqu=qyÞ5 ðqv=qxÞþðqu=qyÞ,
ðqu=qxÞðqu=qzÞ5ðqw=qxÞþðqu=qzÞ [17,18,19]. Substituting the displacement components (1) to the strain–displacement
relations (2), the nonvanishing strain resultants are obtained as

exx ¼ um
0 þyx

00 � fP
S ðy; zÞþ

1
2ðy

2þz2Þðyx
0 Þ

2 (3a)

gxy ¼ yx
0 qfP

S

qy
�z

 !
(3b)

gxz ¼ yx
0 qfP

S

qz
þy

 !
(3c)

where the second-order geometrically nonlinear term in the right hand side of Eq. (3a) ðy2þz2Þðyx
0 Þ

2=2 is often described as
the ‘‘Wagner strain’’ [20].

Considering strains to be small and employing the second Piola–Kirchhoff stress tensor, the work contributing stress
components are defined in terms of the strain ones as

Sxx

Sxy

Sxz

8><
>:

9>=
>;¼

E� 0 0

0 G 0

0 0 G

2
64

3
75

exx

gxy

gxz

8><
>:

9>=
>; (4)

where E� is obtained from Hooke’s stress–strain law as E� ¼ Eð1�nÞ=ð1þnÞð1�2nÞ. If the plane stress hypothesis is
undertaken then E� ¼ E=1-n2 holds [21], while E is frequently considered instead of E� (E� � E) in beam formulations
[21,22]. This last consideration has been followed throughout the paper, although it is stressed out that any other
reasonable expression of E� could also be used without any difficulty.

2.2. Evaluation of the primary warping function fP
S

The primary warping function is evaluated independently from the following boundary value problem [16,23]:

r2fP
S ¼ 0 in O (5a)

qfP
S

qn
¼ z � ny�y � nz on Gj (5b)

where r2
¼ q2=qy2þq2=qz2 is the Laplace operator and q=qn denotes the directional derivative normal to the boundary G.

Since the problem at hand has Neumann type boundary condition, the evaluated warping function contains an integration
constant (parallel displacement of the cross-section along the bar axis), which is evaluated by inducing the following
constraint: Z

O
fP

S dO¼ 0 (6)

It is worth pointing out that any other constraint could be used, although the use of Eq. (6) decouples the governing
equations of the torsional problem at the greatest extent. Based on Eq. (6), the meaning of the ‘‘average’’ axial displacement
of the cross-section of the bar can now be explained as Eq. (1a) can be written asZ

O
u dO¼ um � Aþyx

0 �

Z
O
fP

S dO (7)

which leads to the relation

um ¼

R
Ou dO

A
(8)
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2.3. Equations of global equilibrium

The stress resultants of the bar are defined as

N¼

Z
O

Sxx dO (9a)

MP
t ¼

Z
O

SP
xy

qfP
S

qy
�z

 !
þSP

xz

qfP
S

qz
þy

 !" #
dO (9b)

Mw ¼�

Z
O

Sxxf
P
S dO (9c)

where MP
t is the primary twisting moment [16] resulting from the primary shear stress distribution (SP

xy ¼ Sxy, SP
xz ¼ Sxz hold

since warping shear stresses are not taken into account within the present formulation) and Mw is the warping moment
(bimoment) due to the torsional curvature [16,21]. It is noted that Eq. (9b) could also be written as

MP
t ¼

Z
O
½SP

xyð�zÞþSP
xzy�dO

by substituting the expressions of shear stresses, carrying out suitable integrations by parts and finally exploiting Eq. (5).
Substituting Eq. (4) into Eq. (9) the stress resultants are obtained as

N¼ EA um
0 þ

1

2

IP

A
ðyx
0 Þ

2

� �
(10a)

MP
t ¼ GIt � yx

0 (10b)

Mw ¼�ECS � yx
00 (10c)

where the polar moment of inertia IP , the torsion constant It and the warping constant CS with respect to the shear center S

are given as

IP ¼

Z
O
ðy2þz2ÞdO (11a)

It ¼

Z
O

y2þz2þy �
qfP

S

qz
�z �

qfP
S

qy

 !
dO (11b)

CS ¼

Z
O
ðfP

S Þ
2 dO (11c)

It is worth here noting that the aforementioned stress resultants refer to the directions of the cross-section at its deformed
configuration (the cross-sections’ rotations are taken into account), since they have been defined with respect to the
second Piola–Kirchhoff stress tensor. Nevertheless, the expressions of the primary twisting and warping moments
(Eq. (10b) and (10c)) are proven to be identical with those of the linear case [21].

The principle of virtual work under a total Lagrangian formulation

dWintþdWmass ¼ dWext (12)

where

dWint ¼

Z
V
ðSxxdexxþSxydgxyþSxzdgxzÞdV (13a)

dWmass ¼

Z
V
rð €uduþ €vdvþ €wdwÞdV (13b)

dWext ¼

Z
F
ðtx � duþty � dvþtz � dwÞdF (13c)

is employed to obtain global equilibrium equations. In the above equations, dð�Þ denotes virtual quantities, ( � ) denotes
differentiation with respect to time, V ; F are the volume and the surface of the bar, respectively, at the initial configuration
and tx; ty; tz are the components of the traction vector with respect to the undeformed surface of the bar. Substituting the
stress resultants given in Eq. (4), the strain ones given in Eq. (3) and the displacement components given in Eqs. (1)–(12),
the governing partial differential equations of the bar are obtained after some algebra as

rA � €um�
qN

qx
¼ nðx; tÞ (14a)
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rIP �
€yx�rCS �

€yx
00 �

qMP
t

qx
�
q2Mw

qx2
�

3

2
EIPPðyx

0 Þ
2yx
00 �EIP � um

0 yx
00 �EIP � um

00 yx
0 ¼mtðx; tÞþ

q
qx
½mwðx; tÞ� (14b)

while the corresponding boundary conditions at the bar ends are written as

ðN�NÞdum ¼ 0 (15a)

½ðMwÞ
0 þMP

t þ
1
2EIPPðyx

0 Þ
3
þEIP � um

0 yx
0 �Mt �dyx ¼ 0 (15b)

ð�MwþMw Þdyx
0 ¼ 0 (15c)

where the geometric cross-sectional property IPP is given as

IPP ¼

Z
O
ðy2þz2Þ

2 dO (16)

In Eq. (15), N , Mt , Mw are the externally applied conservative time dependent axial force, twisting and warping moments at
the bar ends, respectively. The expressions of the externally applied loads with respect to the first Piola–Kirchhoff stress
components can be easily deduced by virtue of Eq. (13c). It is worth here noting that in deriving the governing equations of
the bar the secondary shear stress distribution has been ignored [24]. Employing Eq. (10), the governing partial differential
equations of the initial boundary value problem of the bar are formulated as

rA � €um�EA � um
00 �EIP � yx

0 yx
00 ¼ nðx; tÞ (17a)

rIP �
€yx�rCS �

€yx
00 �GItyx

00 þECSy
0000

x �
3

2
EIPP � ðyx

0 Þ
2yx
00 �EIP � um

0 yx
00 �EIP � um

00 yx
0 ¼mtðx; tÞþ

q
qx
½mwðx; tÞ� (17b)

subjected to the initial conditions (x 2 ð0; lÞ)

umðx;0Þ ¼ um0ðxÞ; _umðx;0Þ ¼ _u m0ðxÞ (18a,b)

yxðx;0Þ ¼ yx0ðxÞ; _yxðx;0Þ ¼
_y x0ðxÞ (18c,d)

together with the boundary conditions at the bar ends x¼ 0; l

a1Nþa2um ¼ a3 (19a)

b1Mtþb2yx ¼ b3; b1Mwþb2yx
0 ¼ b3 (19b,c)

where N, Mt, Mw are the axial force, twisting and warping moments at the bar ends, respectively, given as

N¼ EA � um
0 þ1

2EIPðyx
0 Þ

2 (20a)

Mt ¼ GItyx
0 �ECSy

000

x þEIP � um
0 yx
0 þ1

2EIPPðyx
0 Þ

3 (20b)

Mw ¼�ECS � yx
00 (20c)

while ai, bi, b i ði¼ 1;2;3Þ are time dependent functions specified at the boundary of the bar. The boundary conditions (19)
are the most general boundary conditions for the problem at hand, including also the elastic support. It is apparent that all
types of the conventional torsional boundary conditions (clamped, simply supported, free or guided edge) can be derived
from Eq. (19b,c) by specifying appropriately the functions bi and bi (e.g. for a clamped edge it is b2 ¼ b2 ¼ 1,
b1 ¼ b3 ¼ b1 ¼ b3 ¼ 0, for a simply supported edge b2 ¼ b1 ¼ 1, b1 ¼ b3 ¼ b2 ¼ b3 ¼ 0 and for a free edge b1 ¼ b1 ¼ 1,
b2 ¼ b3 ¼ b2 ¼ b3 ¼ 0). It is worth here noting that at clamped edges warping is fully restrained (i.e. the longitudinal
displacement u¼ 0), therefore the term yx

0 � fP
S of Eq. (1a) must vanish. This condition is mathematically accomplished if

yx
0 equals to zero which is the exact expression (yx

0 ¼ 0) of the warping boundary condition for the clamped edge [16]. The
terms of the boundary conditions of Eq. (19) are nonlinear by virtue of Eq. (20), while damping could also be included in
Eq. (17) without any special difficulty.

The solution of the initial boundary value problem described by Eqs. (17)–(19), for the evaluation of the unknown
displacement components assumes that the warping CS and the torsion It constants defined from Eq. (11b,c) are already
established. Eq. (11b,c) indicate that the evaluation of the aforementioned constants presumes that the primary warping
function fP

S at any interior point of the domain O of the cross-section of the bar is evaluated after solving the boundary
value problem described by Eq. (5a,b). Once umðx; tÞ, yxðx; tÞ are established, the stress components and the displacement
field can be evaluated employing Eqs. (4) and (1), respectively.

The established initial boundary value problem is strongly coupled and nonlinear. A significant reduction on the set of
differential equations can be achieved by neglecting the axial inertia term rA � €um of Eq. (17a), a common assumption
among dynamic beam formulations. Ignoring this term a single partial differential equation along with a single unknown
displacement component (the angle of twist yxðx; tÞ) is obtained, which is further simplified in the case of vanishing
distributed axial load along the bar. In what follows, this procedure is described in detail for the cases of axially immovable
ends and constant axial load along the bar which are of great practical interest, while the aforementioned term will be
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taken into account in the section of numerical analysis for the first time in the literature for the nonlinear nonuniform
torsional vibrations problem investigating the influence of its ignorance.

2.4. Reduced initial boundary value problem for special cases of axial boundary conditions

For the case of axially immovable ends, the axial boundary conditions (19a) are written as

umð0; tÞ ¼ 0; umðl; tÞ ¼ 0 (21a,b)

Employing the aforementioned simplifications, Eq. (17a) gives

um
00 ¼ �

IP

A
� yx
0 yx
00 ; 8x 2 ð0; lÞ (22)

which after subsequent integration and utilization of Eq. (21) yields

um
0 ¼ �

1

2

IP

A
ðyx
0 Þ

2
þ

~N

EA
; 8x 2 ½0; l� (23)

where ~N is a time-dependent tensile axial load induced by the geometrical nonlinearity given as

~N ¼
1

2

EIP

l
�

Z l

0
ðyx
0 Þ

2 dx (24)

For the case of constant along the bar axial load Eq. (22) holds, while the axial boundary conditions (19a) are written as

umð0; tÞ ¼ 0;Nðl; tÞ ¼Nðl; tÞ (25a,b)

In this case, Eq. (23) holds by setting ~N ¼Nðl; tÞ.
Substituting Eqs. (22), (23) into Eqs. (17b), (20b) the reduced initial boundary value problem is established as

rIP �
€yx�rCS �

€yx
00 � GItþ

IP

A
~N

� �
yx
00 þECSy

0000

x �
3

2
EInðyx

0 Þ
2yx
00 ¼mtðx; tÞþ

q
qx
½mwðx; tÞ� (26)

along with the pertinent initial conditions (18c,d) and the boundary conditions (19b,c). It is worth here noting that
Eqs. (20a,c) hold, whereas Eq. (20b) is modified as

Mt ¼ GItþ
IP

A
~N

� �
yx
0 �ECS � y

000

x þ
1

2
EInðyx

0 Þ
3 (27)

In Eqs. (26) and (27) In is a nonnegative geometric cross-sectional property, related to the geometrical nonlinearity,
defined as

In ¼ IPP�
I2
P

A
(28)

Comparing Eqs. (26), (27), (20a,c) with the corresponding set presented by Rozmarynowski and Szymczak in [1], the
following improvements are noted:
�
 In Ref. [1], the torsional and warping boundary conditions do not include the elastic support case.

�
 In Ref. [1], both the partial differential equation and the torsional boundary condition do not include the nonlinear

terms related to the finite twisting rotation. The influence of the ignorance of these terms will be subsequently
numerically investigated.

3. Integral representations—numerical solution

3.1. For the axial displacement um and the angle of twist yx

According to the precedent analysis, the nonlinear nonuniform torsional vibration problem of a bar reduces in
establishing the displacement components umðx; tÞ and yxðx; tÞ having continuous partial derivatives up to the second and
fourth order with respect to x, respectively, and up to the second order with respect to t, satisfying the nonlinear initial
boundary value problem described by the coupled governing Eq. (17) along the bar, the initial conditions (18) and the
boundary conditions (19) at the bar ends x¼ 0; l.

Eqs. (17)–(19) are solved using the analog equation method [13] as it is developed for hyperbolic differential equations
[25]. According to this method, let umðx; tÞ and yxðx; tÞ be the sought solutions of the aforementioned problem. Setting as
u1ðx; tÞ ¼ umðx; tÞ, u2ðx; tÞ ¼ yxðx; tÞ and differentiating with respect to x these functions two and four times, respectively,
yields

q2u1

qx2
¼ q1ðx; tÞ;

q4u2

qx4
¼ q2ðx; tÞ (29a,b)
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Eqs. (29) are quasi-static, that is the time variable appears as a parameter. They indicate that the solution of Eqs. (17)–
(19) can be established by solving Eq. (29) under the same boundary conditions (19), provided that the fictitious load
distributions qiðx; tÞ ði¼ 1;2Þ are first established. These distributions can be determined using BEM as follows.

The solutions of Eq. (29a,b) are given in integral form as [25]

u1ðx; tÞ ¼

Z l

0
q1u�1 dx� u�1

qu1

qx
�

du�1
dx

u1

� �x ¼ l

x ¼ 0

(30a)

u2ðx; tÞ ¼

Z l

0
q2u�2 dx� u�2

q3u2

qx3
�

du�2
dx

q2u2

qx2
þ

d2u�2
dx2

qu2

qx
�

d3u�2
dx3

u2

" #l

0

(30b)

where u�1, u�2 are the fundamental solutions given as

u�1 ¼
1

2
jrj; u�2 ¼

1

12
l3 2þ

r

l

��� ���3�3
r

l

��� ���2� �
(31a,b)

with r¼ x-x, x,x points of the bar, which are particular singular solutions of the equations

d2u�1
dx2
¼ dðx�xÞ;

d4u�2
dx4
¼ dðx�xÞ (32a,b)

Employing Eqs. (31a,b), the integral representations (30a,b) can be written as

u1ðx; tÞ ¼

Z l

0
q1 L2ðrÞþ

1

2
l

� �
dx� L2ðrÞþ

1

2
l

� �
qu1

qx
þL1ðrÞu1

� �l

0

(33a)

u2ðx; tÞ ¼

Z l

0
q2L4ðrÞdx� L4ðrÞ

q3u2

qx3
þL3ðrÞ

q2u2

qx2
þL2ðrÞ

qu2

qx
þL1ðrÞu2

" #l

0

(33b)

where the kernels LjðrÞ; ðj¼ 1;2;3;4Þ are given in Appendix A. Notice that in Eqs. (33a,b), for the line integrals it is r¼ x-x,
x, x points inside the bar, whereas for the rest terms it is r¼ x-z, x inside the bar, z at the bar ends 0,l.

Differentiating Eqs. (33a,b) with respect to x, results in the integral representations of the derivatives of ui as

qu1ðx; tÞ

qx
¼

Z l

0
q1L1ðrÞdx� L1ðrÞ

qu1

qx

� �x ¼ l

x ¼ 0

(34a)

q2u1ðx; tÞ

qx2
¼ q1ðx; tÞ (34b)

qu2ðx; tÞ

qx
¼

Z l

0
q2L3ðrÞdx� L3ðrÞ

q3u2

qx3
þL2ðrÞ

q2u2

qx2
þL1ðrÞ

qu2

qx

" #l

0

(34c)

q2u2ðx; tÞ

qx2
¼

Z l

0
q2L2ðrÞdx� L2ðrÞ

q3u2

qx3
þL1ðrÞ

q2u2

qx2

" #l

0

(34d)

q3u2ðx; tÞ

qx3
¼

Z l

0
q2L1ðrÞdx� L1ðrÞ

q3u2

qx3

" #l

0

(34e)

q4u2ðx; tÞ

qx4
¼ q2ðx; tÞ (34f)

The integral representations (33a,b) and (34c) when applied to the bar ends (0; l), together with the boundary
conditions (19), are employed to express the unknown boundary quantities uiðz; tÞ, ui;xðz; tÞ, u2;xxðz; tÞ and u2;xxxðz; tÞ ðz¼ 0Þ in
terms of qi. This is accomplished numerically as follows.

The interval ð0; lÞ is divided into L elements (Fig. 2), on which qiðx; tÞ is assumed to vary according to certain law
(constant, linear, parabolic, etc.). The constant element assumption is employed here as the numerical implementation
becomes very simple and the obtained results are very good.
Fig. 2. Discretization of the beam interval and distribution of the nodal points.
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Employing the aforementioned procedure, the following set of 12 nonlinear algebraic equations is obtained

F1 E12 E13 0 0 0 0 0

0 D22 D23 0 0 0 0 0

0 0 0 F3 E35 E36 E37 E38

0 0 0 F4 0 E46 E47 E48

0 0 0 0 D55 D56 0 D58

0 0 0 0 0 D66 D67 0

2
6666666664

3
7777777775

q1

û1

û1;x

q2

û2

û2;x

û2;xx

û2;xxx

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

þ

0 0 0

Dnl
21 0 0

0 0 0

0 0 0

0 Dnl
52 Dnl

53

0 0 0

2
666666664

3
777777775

û
2
2

û
3
2

û1û2

8>><
>>:

9>>=
>>;¼

0

a3

0

0

b3

b3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(35)

where D22, D23, D55, D56, D58, D66, D67, Dnl
21, Dnl

52, Dnl
53 are 2�2 rectangular known, in general time dependent, matrices

including the values of the functions aj;bj;b j ðj¼ 1;2Þ of Eq. (19a); a3, b3, b3 are 2�1 known, in general time dependent,

column matrices including the boundary values of the functions a3;b3;b3 of Eq. (19a,b,c); E12, E13, E35, E36, E37, E38, E46,

E47, E48 are rectangular 2�2 known coefficient matrices resulting from the values of the kernels LjðrÞ ðj¼ 1;2;3;4Þ at the

bar ends and F1;F3; F4 are 2� L rectangular known matrices originating from the integration of the kernels on the axis of
the bar. Moreover

û i ¼ fuið0; tÞ uiðl; tÞg
T ði¼ 1;2Þ (36a)

û i;x ¼
quið0; tÞ

qx

quiðl; tÞ

qx

� �T

ði¼ 1;2Þ (36b)

û2;xx ¼
q2u2ð0; tÞ

qx2

q2u2ðl; tÞ

qx2

( )T

(36c)

û2;xxx ¼
q3u2ð0; tÞ

qx3

q3u2ðl; tÞ

qx3

( )T

(36d)

û
2
2 ¼

qu2ð0; tÞ

qx

� �2 qu2ðl; tÞ

qx

� �2
( )T

(36e)

û
3
2 ¼

qu2ð0; tÞ

qx

� �3 qu2ðl; tÞ

qx

� �3
( )T

(36f)

û1û2 ¼
qu1ð0; tÞ

qx
�
qu2ð0; tÞ

qx

qu1ðl; tÞ

qx
�
qu2ðl; tÞ

qx

� �T

(36g)

are vectors including the two unknown time dependent boundary values of the respective boundary quantities and

qi ¼ fq
i
1qi

2 � � � q
i
Lg

T ði¼ 1;2Þ are vectors including the L unknown time dependent nodal values of the fictitious loads.

Discretization of Eqs. (33), (34) and application to the L collocation nodal points yields

u1 ¼ A0
1q1þC0û1þC1û1;x; u1;x ¼A1

1q1þC0û1;x; u1;xx ¼ q1 (37a,b,c)

u2 ¼A0
2q2þC0û2þC1

0 û2;xþC2û2;xxþC3û2;xxx (37d)

u2;x ¼A1
2q2þC0û2;xþC1

0 û2;xxþC2û2;xxx (37e)

u2;xx ¼A2
2q2þC0û2;xxþC1

0 û2;xxx (37f)

u2;xxx ¼ A3
2q2þC0û2;xxx; u2;xxx ¼ q2 (37g,h)

where Ai
1;A

j
2ði¼ 0;1Þ, ðj¼ 0;1;2;3Þ are L� L known matrices; C0, C1, C1

0 , C2, C3 are L�2 known matrices and ui, ui;x, ui;xx,
ui;xxx, ui;xxxx are time dependent vectors including the values of uiðx; tÞ and their derivatives at the L nodal points.
Eqs. (37a,b,d,e,f,g) can be assembled more conveniently as

u1 ¼H0
1d1; u1;x ¼H1

1d1 (38a,b)

u2 ¼H0
2d2; u2;x ¼H1

2d2; u2;xx ¼H2
2d2; u2;xxx ¼H3

2d2 (38c,d,e,f)
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where dT
1 ¼ fq1 û1 û1;xg, dT

2 ¼ fq2 û2 û2;x û2;xx û2;xxxg are generalized unknown vectors and Hi
1;H

j
2 ði¼ 0;1Þ, ðj¼ 0;1;2;3Þ

are L� ðLþ4Þ and L� ðLþ8Þ known matrices, respectively, arising from Ai
1, Aj

2, C0, C1, C1
0 , C2, C3.

Applying Eqs. (17) to the L collocation points and employing Eqs. (38), 2L semidiscretized nonlinear equations of motion
are formulated as

M
€d1

€d2

( )
þK

d1

d2

( )
þknl
ðHi

1;H
j
2;d1;d2Þ ¼ f (39)

where knl is a nonlinear generalized stiffness vector and M;K; f are generalized mass matrix, stiffness matrix and force
vector, respectively, given in Appendix B.

Eqs. (38a, c) when combined with Eqs. (18a, c) yield the following 2L linear equations with respect to d1, d2 for t¼ 0

H0
1d1ð0Þ ¼ um0; H0

2d2ð0Þ ¼ h0 (40a,b)

The above equations, together with Eqs. (35) written for t¼ 0, form a set of 2Lþ12 nonlinear algebraic equations which are
solved to establish the initial conditions d1ð0Þ, d2ð0Þ. Similarly, Eqs. (38a, c) when combined with Eqs. (18b, d) yield the
following 2L linear equations with respect to _d1, _d2 for t¼ 0:

H0
1
_d1ð0Þ ¼ _u m0; H0

2
_d2ð0Þ ¼

_h0 (41a,b)

The above equations, together with 12 equations resulting after differentiating Eqs. (35) with respect to time and writing
them for t¼ 0, form a set of 2Lþ12 linear algebraic equations, from which the initial conditions _d1ð0Þ, _d2ð0Þ are
established. It is worth here noting that in general, d1ð0Þ, d2ð0Þ must be employed so that the system of equations can be
resolved.

The aforementioned initial conditions along with Eqs. (35), (39) form an initial value problem of differential-algebraic
equations (DAE) which can be solved using any efficient solver. In this study, the Petzold–Gear method is used [26] after
introducing new variables to reduce the order of the system [27] and after differentiating Eqs. (35) with respect to time to
obtain an equivalent system with a value of system index ind¼ 1 [26].

3.1.1. Reduced initial boundary value problem—free vibrations

The reduced initial boundary value problem described by Eqs. (26), (19b,c), (18c,d) can be similarly solved following the
procedure presented above. Moreover, for the case of free vibrations, it can be assumed that points of reversal of motion
exist, thus the following definitions are made [1,14]:

_ymax ¼ 0; €ymax ¼�o2 � ymax (42a,b)

where the subscript max denotes the points at which reversal of motion occurs and o2 (here) denotes an eigenvalue-like
quantity that is indicative of the intensity of the nonlinearity [14,28]. It is pointed out that o does not correspond to the
bar’s natural frequency, since Eq. (26) apparently does not admit a variables separable solution, while for the same reason,
the use of a single harmonic (as described in Eq. (42b)) leads to an approximate solution [29]. Substituting Eq. (42b) into
Eq. (26) and taking into account that mt , mw along with b3, b3 of Eqs. (26), (19b, c), respectively vanish, a nonlinear
generalized eigenvalue problem is formulated as

½KL
r þKNL

r �o
2Mr�d2 ¼ 0 (43)

where KNL
r is a nonlinear stiffness matrix and Mr ;K

L
r are mass and stiffness matrices given in Appendix B.

The aforementioned problem is solved iteratively using the direct iteration technique (DIT) [14], following the
algorithm presented in [1]. The algorithm is initiated with the fundamental mode shape df

2 of the linear case (i.e. set
KNL

r ¼ 0 in Eq. (43)) as a starting vector, while the normalization of the fundamental mode shape is performed by specifying
the amplitude of the angle of twist yx0 at a selected cross-section.

The eigenvalue problem of Eq. (43) is indicative of the nonlinear behavior of the bar and does not provide solution in the
time domain, while the arising eigenvalues and mode shapes depend on the amplitude of the initial conditions. For the
case of axially immovable ends, ~N is computed in each iteration by numerical integration of Eq. (24) after employing
the aforementioned discretization of the bar, the constant element assumption and Eq. (38d). The computed eigenvalues
are positive except 8 infinite ones which are ignored, since the mass matrix Mr (Eq. (B.2c)) contains 8 rows of zero
elements.

3.2. For the primary warping function fP
S

The integral representations and the numerical solution for the evaluation of the axial displacement um and the angle of
twist yx presented in the previous section assume that the warping CS and the torsion It constants from Eqs. (11b,c) are
already established. Eqs. (11b,c) indicate that the evaluation of the aforementioned constants presumes that the primary
warping function fP

S at any interior point of the domain O of the cross-section of the bar is known. Once fP
S is established,

CS and It constants are evaluated by converting the domain integrals into line integrals along the boundary using the
corresponding relations presented in Sapountzakis and Mokos [16].
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Moreover, the evaluation of the primary warping function fP
S with respect to the shear center S and of its derivatives

with respect to y and z at any interior point for the calculation of the stress components (Eqs. (4)) is accomplished using
BEM [30] as this is presented in [31,32]. Finally, since the nonlinear torsional vibrations problem is solved by the BEM, the
domain integrals of Eqs. (11a) and (16) have to be converted to boundary line ones, employing integration by parts, the
Gauss theorem and the Green identity as

IP ¼
1

3

Z
G
ðy3nyþz3nzÞds (44a)

IPP ¼

Z
G

1

5
y5þ

1

3
y3z2

� �
nyþ

1

5
z5þ

1

3
y2z3

� �
nz

� �
ds (44b)

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a computer program has
been written and representative examples have been studied to demonstrate the efficiency, wherever possible the
verification and the range of applications of the developed method. It is noted that the probability of the bar’s exhibiting
chaotic motion in its nonlinear response is not investigated within the present study. Moreover, the bar’s material is
assumed to be within the linear elastic range and the strains are considered to be small regardless of the magnitude of the
bar’s angle of twist yx. In all the examples treated, an I-shaped cross-section bar (E¼ 2:1� 108 kN m�2,
G¼ 8:1� 107 kN m�2, r¼ 8:002 kN s2 m�4) of length l¼ 4:0 m, having flange and web width tf ¼ tw ¼ 0:01 m, total height
and total width h¼ b¼ 0:20 m has been studied, while the numerical results have been obtained employing 21 nodal
points (longitudinal discretization) and 400 boundary elements (cross-section discretization). The geometric constants of
the bar are given in Table 1.

Example 1. In the first example, for comparison reasons, the free vibrations of the aforementioned bar with various
boundary conditions have been studied. More specifically, the generalized eigenvalue problem of Eq. (43) (reduced initial
boundary value problem) has been solved to obtain the dynamic characteristics at the points of reversal of motion. A
member with simply supported torsional boundary conditions is firstly considered. In Table 2, the fundamental natural
frequency of and the induced axial load ~N of the bar with simply supported torsional boundary conditions and axially
immovable ends are presented for both the linear and three nonlinear cases with various initial midpoint angle of twist
yx0ðl=2Þ amplitudes, taking into account all the nonlinear terms of Eqs. (26)–(27) ðIna0Þ or ignoring the geometric cross-
sectional constant In ¼ 0. In this table, the obtained results from the proposed method ignoring the aforementioned
constant are compared with those obtained from a FEM solution [1], verifying the presented formulation (the discrepancy
of the values is attributed to the inaccuracies of Vlasov’s thin-walled beam theory employed by the authors in [1]).
Moreover, the influence of the nonlinear terms related to the geometric cross-sectional constant In is remarked especially
for large amplitudes of vibration.

In Table 3, the fundamental natural frequency of of the bar with simply supported torsional boundary conditions

subjected to a constant with respect to time axial load Nðl; tÞ at its right end is presented for both the linear and three

nonlinear cases with various initial midpoint angle of twist yx0ðl=2Þ amplitudes and for various values of this load (tensile,

vanishing and two compressive ones), the last of which corresponds to a torsional post-buckled state, demonstrating the

efficiency of the proposed formulation. It is worth here noting that in the post-buckling case the initial midpoint angle of

twist amplitude cannot be arbitrary, since it must be greater than the one corresponding to the static (post-buckled)

equilibrium state.

Moreover, in Tables 4 and 5 the same quantities with the respective ones of Tables 2 and 3 of the bar with a simply

supported left end and a clamped right end as torsional boundary conditions are presented, while in Table 6 the obtained

values of the fundamental mode shape of the angle of twist at selected points along the bar ignoring the geometric cross-

sectional constant In ¼ 0 are presented as compared with those obtained from a FEM solution [1] (case of axially

immovable ends as axial boundary conditions). Once again, the verification and the efficiency of the proposed method are
Table 1
Geometric constants of the bar of the numerical examples.

A (m2) 5.800�10�3

IP (m4) 5.434�10�5

IPP (m6) 6.722�10�7

In (m6) 1.631�10�7

It (m4) 2.080�10�7

CS (m6) 1.200�10�7
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Table 2

Fundamental natural frequency of and induced axial load ~N of the bar of Example 1 with simply supported torsional boundary conditions and axially

immovable ends.

Present study Rozmarynowski and Szymszak [1]

Ina0 In ¼ 0 In ¼ 0

of (s�1)

Linear 214.23 214.23 207.23

yx0ðl=2Þ ¼ 0:1 rad 215.04 214.78 207.83

yx0ðl=2Þ ¼ 0:2 rad 217.44 216.40 209.62

yx0ðl=2Þ ¼ 1:5 rad 348.86 313.77 –

~N ðkNÞ

Linear – – –

yx0ðl=2Þ ¼ 0:1 rad 17.60 (3) 17.60 (3) 19.43

yx0ðl=2Þ ¼ 0:2 rad 70.36 (3) 70.39 (3) 77.72

yx0ðl=2Þ ¼ 1:5 rad 3891.26 (5) 3959.63 (3) –

Values in parentheses indicate the performed iterations to obtain a numerical accuracy of order 10�6 to the convergence criterion.

Table 3
Fundamental natural frequency of of the bar of Example 1 with simply supported torsional boundary conditions and constant axial load.

N ðl; tÞðkNÞ

1000 0 �1000 �4000

Linear 243.25 214.23 180.62 –

yx0ðl=2Þ ¼ 0:1 rad 243.48 (2) 214.49 (2) 180.93 (2) –a

yx0ðl=2Þ ¼ 0:2 rad 244.17 (3) 215.28 (3) 181.86 (3) –a

yx0ðl=2Þ ¼ 1:5 rad 288.46 (5) 264.36 (5) 237.82 (5) 128.61 (6)

Values in parentheses indicate the performed iterations to obtain a numerical accuracy of order 10�6 to the convergence criterion.
a Equilibrium cannot be reached.

Table 4

Fundamental natural frequency of and induced axial load ~N of the bar of Example 1 with simply supported left end, clamped right end as torsional

boundary conditions and axially immovable ends.

Present study Rozmarynowski and Szymszak [1]

Ina0 In ¼ 0 In ¼ 0

of (s�1)

Linear 285.21 285.21 279.53

yx0ðl=2Þ ¼ 0:1 rad 285.99 285.73 280.09

yx0ðl=2Þ ¼ 0:2 rad 288.32 287.26 281.77

yx0ðl=2Þ ¼ 1:5 rad 414.66 379.93 –

~N ðkNÞ

Linear – – –

yx0ðl=2Þ ¼ 0:1 rad 19.21 (3) 19.22 (3) 21.27

yx0ðl=2Þ ¼ 0:2 rad 76.73 (4) 76.82 (3) 85.03

yx0ðl=2Þ ¼ 1:5 rad 4067.54 (6) 4190.79 (6) –

Values in parentheses indicate the performed iterations to obtain a numerical accuracy of order 10�6 to the convergence criterion.
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illustrated. Noting the aforementioned Tables 2–6, it is easily verified that the geometrical nonlinearity alters the mode

shapes of vibration, induces a stiffening axial force in the case of axially immovable ends and stiffens the structure leading

to higher natural frequencies, which are the main aspects of the nonlinear torsional free vibration analysis. Obviously these

effects are more pronounced with the increase of the initial midpoint angle of twist amplitude.
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Table 5
Fundamental natural frequency of of the bar of Example 1 with simply supported left end, clamped right end as torsional boundary conditions and

constant axial load.

N ðl; tÞðkNÞ

1000 0 �1000 �5230

Linear 310.68 285.21 257.01 –

yx0ðl=2Þ ¼ 0:1 rad 310.92 (2) 285.48 (2) 257.32 (2) –a

yx0ðl=2Þ ¼ 0:2 rad 311.64 (3) 286.29 (3) 258.23 (3) 14.35 (4)

yx0ðl=2Þ ¼ 1:5 rad 356.30 (5) 334.97 (6) 312.12 (6) 185.58 (7)

Values in parentheses indicate the performed iterations to obtain a numerical accuracy of order 10�6 to the convergence criterion.
a Equilibrium cannot be reached.

Table 6
Fundamental mode shape of the angle of twist at points along the bar of Example 1 with simply supported left end, clamped right end as torsional

boundary conditions and axially immovable ends.

x/l yx0ðl=2ÞðradÞ

Linear 0.1 0.2 1.5

Present

study

ðIn ¼ 0Þ

Rozmarynowski and

Szymszak [1]

Present study

ðIn ¼ 0Þ

Rozmarynowski

and Szymszak

[1]

Present

study

ðIn ¼ 0Þ

Rozmarynowski and

Szymszak [1]

Present

study

ðIn ¼ 0Þ

Rozmarynowski

and Szymszak [1]

0 0 0 0 0 0 0 0 –

0.125 0.4629 0.4645 0.4627 0.4643 0.4624 0.4640 0.44440 –

0.25 0.8270 0.8295 0.8268 0.8294 0.8263 0.8288 0.8000 –

0.375 1.0171 1.0192 1.0169 1.0191 1.0166 1.0187 0.9971 –

0.5 1 1 1 1 1 1 1 –

0.625 0.7925 0.7912 0.7926 0.7913 0.7930 0.7917 0.8151 –

0.75 0.4689 0.4665 0.4691 0.4667 0.4696 0.4673 0.5013 –

0.875 0.1501 0.1485 0.1502 0.1486 0.1505 0.1490 0.1691 –

1 0 0 0 0 0 0 0 –

E.J. Sapountzakis, V.J. Tsipiras / Journal of Sound and Vibration 329 (2010) 1853–1874 1865
Example 2. In the second example, the free vibrations of the simply supported bar (according to the torsional boundary
conditions) with various initial conditions has been studied. Both the complete and the reduced initial boundary value
problems presented in the previous sections have been solved to obtain the response of the bar in the time domain. The
linear fundamental mode shape of the angle of twist is firstly considered as initial twisting rotations yx0ðxÞ along with zero
initial twisting velocities

_y x0ðxÞ, to the beam with immovable left and free right end according to the axial boundary
conditions. The normalization of the mode shape is performed by specifying the amplitude of the angle of twist at the
midpoint of the bar.

In Figs. 3 and 4 the time histories of characteristic kinematical components (angle of twist yxðl=2; tÞ at the midpoint of the

bar, axial displacement umðl; tÞ at the bar’s right end) and the twisting moment at the bar’s left end Mtð0; tÞ, respectively, are

presented for two values of the initial midpoint angle of twist amplitude (yx0ðl=2Þ ¼ 1:5 rad, yx0ðl=2Þ ¼ 0:2 rad) performing

two cases of analysis, namely a linear one employing the proposed method and ignoring the nonlinear terms of Eqs. (17),

(20) and a nonlinear—reduced initial boundary value problem of Eqs. (26), (18c,d), (19b,c). From these figures, the effects

of both the nonlinear terms and the initial midpoint angle of twist amplitude are observed on both the kinematical and

stress components. Moreover, from Fig. 3a, the natural frequency of the angle of twist yxðl=2; tÞ (nonlinear analysis case,

yx0ðl=2Þ ¼ 1:5 rad) is computed as of ¼ 255:41 s�1, thus exhibiting a variation of 3.4 percent as compared with the

corresponding value of the frequency-like quantity presented in Table 3 ðof ¼ 264:36 s�1Þ. Thus, as it is already mentioned,

the frequency-like values obtained from the solution of the eigenvalue problem of Eq. (43) should not be confused with the

actual natural frequencies of the bar. It is worth here noting that the pronounced alteration of the twisting moment’s time

history pattern and a slight change of the amplitude of the angle of twist (which is not clearly shown in Fig. 3a) are

attributed to the fact that the fundamental nonlinear mode shape does not coincide with the linear one. Moreover, as it is

easily verified from Fig. 3, the frequency of the axial displacement’s response is twice as much as the one of the twisting

rotation’s one.
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Fig. 3. Time histories of the angle of twist at the midpoint (a) and axial displacement at the right end point (b) of the bar of Example 2, for the case of

initial twisting rotations yx0ðxÞ.
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Moreover, the case of constant along the bar initial twisting velocities
_y x0ðxÞ ¼ 50 rad s�1, variable along the bar initial

axial displacements given from um0ðxÞ ¼ ½Nðl;0Þ=ðEAÞ�x, along with vanishing initial twisting rotations yx0ðxÞ ¼ 0 and initial

axial velocities _u m0ðxÞ ¼ 0, applied to the bar with immovable left and free right end subjected to constant axial load

Nðl; tÞ ¼ -3000 kN according to the axial boundary conditions, has been also studied. In Fig. 5 the time history of the angle of

twist yxðl=2; tÞ at the midpoint of the bar is presented for three cases of analysis, namely a linear one, a nonlinear-complete

and a reduced initial boundary value problem, as these were presented in the previous sections. The main conclusions of

the nonlinear torsional free vibration analysis are once again verified. In Fig. 6, the time histories of the axial stress

resultant at the bar’s left end Nð0; tÞ and of the axial displacement at the bar’s right end umðl; tÞ are presented for three cases

of analysis. Apparently, the time dependent response of the axial stress resultant can only be estimated by solving the



ARTICLE IN PRESS

Fig. 4. Time history of the twisting moment at the left end of the bar of Example 2, for the case of initial twisting rotations yx0ðxÞ.

Fig. 5. Time history of the angle of twist at the midpoint of the bar of Example 2, for the case of initial twisting velocities
_y x0ðxÞ and initial axial

displacements um0ðxÞ.
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complete initial boundary value problem, while the discrepancy of its extreme values compared with the initial one is

remarkable. Thus, the influence of the axial inertia term rA � €um on the axial stress resultant is pointed out, while from

Figs. 5 and 6b its influence on the kinematical components is proved to be negligible. Moreover, it is once again observed

that the frequency of the axial displacement’s response is twice as much as the one of the twisting rotation’s one. Finally, in

Fig. 7, the time history of the twisting moment Mtð0; tÞ at the bar’s left end for the aforementioned cases of analysis are
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Fig. 8. Time history of the angle of twist at the midpoint of the bar of Example 3.
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presented demonstrating the time dependent influence of the axial inertia term rA � €um on the aforementioned stress

resultant.

Example 3. In order to demonstrate the range of applications of the developed method, in the third example the forced
vibrations of the simply supported bar (according to the torsional boundary conditions) subjected to a moving
concentrated twisting moment has been studied. All of the initial conditions are zero except from the initial axial
displacements, which are given from um0ðxÞ ¼ ½Nðl;0Þ=ðEAÞ�x, while the bar has an immovable left and free right end
subjected to constant axial load Nðl; tÞ ¼�2500 kN according to the axial boundary conditions. The concentrated twisting
moment has a constant numerical value Mt ¼ 20:0 kN m and ‘‘travels’’ with a constant velocity u¼ 40 m s�1, thus the bar is
subjected to free vibrations after t¼ 0:1 s. In Fig. 8 the time history of the angle of twist yxðl=2; tÞ at the midpoint of the bar
is presented for the aforementioned cases of analysis (linear, nonlinear-complete and reduced initial boundary value
problems) demonstrating the discrepancy of the nonlinear response of the bar compared with that of the linear one in both
its forced and free vibrating phase. In Fig. 9, the time histories of the axial stress resultant at the bar’s left end Nð0; tÞ and of
the axial displacement at the bar’s right end umðl; tÞ are presented for three cases of analysis. The conclusions already drawn
from Example 2 are verified. Finally, in Table 7 the extreme values of characteristic kinematical components and the axial
stress resultant Nð0; tÞ at the bar’s left end, computed in the time domain 0:0rtr0:15 ðsÞ are presented, demonstrating the
influence of the geometrical nonlinearity and the axial inertia term rA � €um on them.

5. Concluding remarks

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of simply or
multiply connected cylindrical bars of arbitrary doubly symmetric cross-section, taking into account the effect of
geometrical nonlinearity. The main conclusions that can be drawn from this investigation are
(a)
 The numerical technique presented in this investigation is well suited for computer aided analysis of cylindrical bars of
arbitrarily shaped doubly symmetric cross-section, supported by the most general boundary conditions and subjected
to the combined action of arbitrarily distributed or concentrated time dependent conservative axial and torsional
loading.
(b)
 The geometrical nonlinearity leads to coupling between the torsional and axial equilibrium equations. Moreover, the
arising nonlinear terms alter the mode shapes of vibration.
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(c)
 Large twisting rotations increase the torsional stiffness of the bar, leading eventually to higher natural frequencies.
Moreover, a tensile axial force is induced in the bar for special cases of axial boundary conditions resulting also in the
aforementioned effects.
(d)
 In the treated examples, the axial inertia term rA � €um affects the stress resultants (especially the axial one), while its
influence proves to be negligible on the kinematical components.
(e)
 The developed procedure retains most of the advantages of a BEM solution over a FEM approach, although it requires
longitudinal domain discretization.
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Table 7
Extreme values of various kinematical components and stress resultants at the time domain 0:0rtr0:15 s of the bar of Example 3.

Linear Nonlinear-reduced set of equations Nonlinear-complete set of equations

maxyxðl=2; tÞ ðradÞ 2.456 1.290 1.290

minyxðl=2; tÞ ðradÞ �8.549�10�1
�7.294�10�1

�7.244�10�1

maxyx
0 ð0; tÞ ðrad m-1Þ 1.970 9.818�10�1 9.829�10�1

minyx
0 ð0; tÞ ðrad m-1Þ �6.844�10�1

�5.688�10�1
�5.645�10�1

maxyx
00 ðl=2; tÞ ðrad m-2Þ 6.315�10�1 5.696�10�1 5.304�10�1

minyx
00 ðl=2; tÞ ðrad m-2Þ �1.721 �9.19�10�1

�1.000

max umðl; tÞ ðmÞ �8.210�10�3
�8.210�10�3

�8.159�10�3

min umðl; tÞ ðmÞ �8.210�10�3
�1.746�10�2

�1.758�10�2

max um
0 ðl; tÞ ðm m-1Þ �2.053�10�3

�2.053�10�3
�2.053�10�3

min um
0 ðl; tÞ ðm m-1Þ �2.053�10�3

�6.725�10�3
�6.718�10�3

max Nð0; tÞ ðkNÞ �2.500�103
�2.500�103

�2.798�103

min Nð0; tÞ ðkNÞ �2.500�103
�2.500�103

�2.200�103
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Appendix A

Kernels LjðrÞ; ðj¼ 1;2;3;4Þ (r¼ x�x, x, x points of the bar) appearing in the integral representations of the numerical
solution (Section 3):

L1ðrÞ ¼ �
1

2
sgn

r

l
; L2ðrÞ ¼�

1

2
l 1�

r

l

��� ���	 

(A.1a,b)

L3ðrÞ ¼�
1

4
l2

r

l

��� ��� r

l

��� ����2
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l
; L4ðrÞ ¼

1
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l3 2þ
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��� ���3�3
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��� ���2� �
(A.2c,d)

Appendix B

Generalized mass matrix M, stiffness matrix K, force vector f and nonlinear generalized stiffness vector knl arising from
the initial value problem of Section 3:

M¼
rA �H0

1 0

0 rIP �H
0
2�rCS �H

2
2

" #
(B.1a)

K¼
�EA � I01 0

0 �GIt �H
2
2þECS � I02

" #
(B.1b)

f ¼
n

mtþmw
0

( )
(B.1c)

ðknl
Þi ¼�EIPððH

1
2Þid2ÞððH

2
2Þid2Þ (B.1d)

ðknl
ÞLþ i ¼�

3
2EIPP ½ðH

1
2Þid2�

2ððH2
2Þid2Þ�EIPððH

1
1Þid1ÞððH

2
2Þid2Þ�EIPðd1ÞiððH

1
2Þid2Þ (B.1e)

In Eqs. (B.1), ð�Þi denotes the (arbitrary) i-th row ði¼ 1;2; . . . ; LÞ of the matrix inside the brackets, I01 ¼ ½I 01�, I02 ¼ ½I 02� are
L� ðLþ4Þ, L� ðLþ8Þ rectangular matrices, respectively, with I, 01 and 02 being the L� L identity matrix, the L� 4
and the L� 8 rectangular matrices with zero elements, respectively, while n;mt ;mw

0 are vectors containing
the values of the dynamic external loading at the L nodal points (the elements of mw

0 are written with
respect to the values of mwðx; tÞ at the corresponding collocation points after employing appropriate finite
differences [33]).
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Generalized nonlinear and linear stiffness matrices KNL
r ;KL

r and generalized mass matrix Mr arising from the eigenvalue
problem of Section 3:

KNL
r ¼

�
IP

A
~NðH2

2Þ1�
3

2
EIn½ðH

1
2Þ1d2�

2ðH2
2Þ1

�
IP

A
~NðH2

2Þ2�
3

2
EIn½ðH

1
2Þ2d2�

2ðH2
2Þ2

^

�
IP

A
~NðH2

2ÞL�
3

2
EIn½ðH

1
2ÞLd2�

2ðH2
2ÞL

2
6666666664

3
7777777775
; rows 1;2; :::; L

0 0 0 0 0

0 0 0 0 0

0 0
IP

A
~N � Dnl

r1þ
1

2
EIn � D

nl
r2ðû

2
2Þ 0 0

0 0 0 0 0

2
66664

3
77775; rows Lþ1; Lþ2; :::; Lþ8

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(B.2a)

KL
r ¼

�GIt �H
2
2þECS � I0 rows 1;2; . . . ; L

F3 E35 E36 E37 E38

F4 0 E46 E47 E48

0 D55 D56 0 D58

0 0 D66 D67 0

2
66664

3
77775 rows Lþ1; Lþ2; . . . ; Lþ8

8>>>>>>><
>>>>>>>:

(B.2b)

Mr ¼
rIP �H

0
2-rCS �H

2
2 rows 1;2; . . . ; L

0 rows Lþ1; Lþ2; . . . ; Lþ8

(
(B.2c)

where KNL
r ;KL

r ;Mr are ðLþ8Þ � ðLþ8Þ square matrices, while Dnl
r1, Dnl

r2ðû
2
2Þ in Eq. (B.2a) are 2�2 rectangular ones including

the values of the functions bj ðj¼ 1;2Þ.
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